If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+40x-350=0
a = 10; b = 40; c = -350;
Δ = b2-4ac
Δ = 402-4·10·(-350)
Δ = 15600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15600}=\sqrt{400*39}=\sqrt{400}*\sqrt{39}=20\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-20\sqrt{39}}{2*10}=\frac{-40-20\sqrt{39}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+20\sqrt{39}}{2*10}=\frac{-40+20\sqrt{39}}{20} $
| 12-(-f)=20 | | 3f−4=5 | | 12·y=72 | | 9x-(2x+4)=5x-26 | | 66=193-y | | 2a−18=3a+27 | | -4.1k+16.72=1.7k-1.2k+16.26 | | 9g-8g=20 | | 2a−18=3a−27 | | x1x-82+12=0 | | 13z-5z-5z=3 | | -14r+13r=-9 | | 14y=15y-14 | | 15t-4t-6t+4t-7t=16 | | 19m-16m-2m-m+3m=3 | | 0.005/1=1/x | | 4g-2g-g=2 | | x^2-9x-13=37 | | 17x-4x-7=-4(-3-2x) | | 17j-13j+5j+-8j=-11 | | 2/5y-8=17 | | x-((2/10)x)=200 | | x-(2/10)x=200 | | 16a-9a=14 | | 6(m+10)=4(m-15) | | b/1.3-5.3=1.8 | | 2x−7=2x−7= −3x+18−3x+18 | | 6/5p=12 | | 21-3=6x | | (-1)n=-7 | | p+21=31 | | 7=350x |